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1 Introduction 
In the first PEBS-deliverable (D3.3-2) an overview of the modeling tasks in the Swedish 
safety assessment modeling report that included bentonite buffer was given. Descriptions, 
main results, and discussions about issues related to uncertainties/limitations/inadequacies 
in material representations were given for modeling tasks considered most relevant for the 
PEBS framework. The discussed issues considered, 

• Retention: its lack of coupling to mechanics, and its lack of path dependence. 

• Water transportation: for which the actual driving force/real mechanism is questioned 

to be represented in the present type of models. 

• Mechanical representation: which was found to have limited range of validity, strong 

process dependence, and was designed for typical geomaterials and not for atypical 

geomaterials (clayey swelling materials with montmorillonite as the governing 

constituent).  

As can be seen from studying the listed items above several of the issues relate to a lack of 
generality and couplings in the used models. Also, for the systems we consider, good 
agreement has commonly been obtained between theories based on 
thermodynamical/chemical considerations and experimental findings, e.g. (Low and 
Anderson, 1958), (Oliphant and Low, 1982), (Kahr et al., 1990), (Karnland et al., 2005), 
(Birgersson et al., 2008), and (Birgersson and Karnland, 2009).  

Therefore, as a step towards addressing the listed issues, it is of interest to study general 
continuum theories for mixtures which use thermodynamics and mechanics 
(thermomechanics in short) as a basis and intrinsically allows for various couplings and 
incorporation of chemical reactions. 

The framework of thermomechanical mixture theories contains classical “engineering” soil 
mechanics formulations which we currently use when modeling our system. Therefore, we 
may by studying the more general framework get a new perspective of the “engineering” soil 
mechanics formulations and the concepts used therein.   

The objectives of the material presented here are to give an introduction and overview of a 
thermomechanical continuum theory of mixtures, describe some proposals of constitutive 
relations fitting into this framework, and try to study the basis of some concepts used in 
“engineering” soil mechanics formulations. 

These notes are initialized with a brief orientation about continuum mixture theory as a warm 
up of what is to come. This is followed by a short repetition of continuum thermomechanics 
for a single component body, in order to set the stage and introduce notation.  Thereafter, an 
outline of the main structure of the general theory is followed by notes taken when studying 
existing constitutive laws within the mixture theory framework in an attempt to bring some 
light on the issues listed above. A schematic proposal of a material model structure for 
bentonite buffer is then given in terms of a concept which is called non-associative 
immiscibility. Finally, summary and concluding remarks are given. 



2 

2 Short orientation about continuum mixture theory 

To begin with it should be clear that this report address continuum mixture theory with its 
basis in Rational thermodynamics as first described by Truesdell in 1957 and later on in 
(Truesdell, 1984), a reference I have used a lot. There are more modern mixture theory 
formulations, but since I was somewhat familiar with Rational thermodynamics beforehand it 
was natural to stick with this.  

Continuum mixture theory is a macroscopic representation of the thermomechanical behavior 
of a material body consisting of a mixture of several constituents, i.e. a multi-component 
formulation. The framework is capable of incorporating diffusion, phase transition, and 
chemical reactions in the broadest sense.  

In 1957, Truesdell was the first to cast continuum mixture theory in modern form. At this time, 
what was still lacking was a proper formulation of the entropy inequality and an insight of how 
to use this in the theoretical framework. The prerequisite for this came with Coleman and 
Noll’s work treating single materials presented in 1963. After several propositions had been 
published for mixtures in the following years, all of which, however, turned out to have severe 
defects when trying to represent fluid mixtures, Müller was in 1968 the first who presented a 
workable form of the second law and also pointed out that density gradients should be taken 
as one of the independent variables introduced in the constitutive relations in order to obtain 
a theory that was in agreement with classical thermochemistry.  

Other influential contributors to the field are Bowen, Kelly, Hutter, Gurtin and Liu. The work of 
Bowen is much directed towards the traditional immiscible formulations used in soil 
mechanics with a porous solid penetrated by fluids. We are going to use models proposed by 
Bowen to study some concepts present in the “engineering” soil mechanics formulations.  

In the multi-component formulation, constituents are simultaneously occupying every 
material point. It can be thought of as representing the mixture with a number of 
superimposed continua, each of which represent a constituent. The constituent continua may 
locally be regarded open systems undergoing thermomechanical exchanges with the other 
constituent continua. The exchanges are manifested through introduced production terms in 
the five balance relations for the individual constituents concerning; mass, linear momentum, 
angular momentum, energy, and entropy. The constituent relations are however not 
formulated as conservation equations. The axioms of conservation for the mixture are 
instead formulated as sums of the corresponding production terms, vanishing for all axioms 
except for the entropy production which should be non-negative.  

There are significant differences between the obtained multi-component formulation as 
compared to single component theories. If “mixture quantities” are formed, in addition to 
sums of corresponding constituent quantities, terms including velocity differences will 
contribute. The “mixture stress” (total stress) has for instance contributions from velocity 
differences. One fundamental difference is that the relation between the total energy flux and 
entropy flux is not the same. This comes from an additional contribution to the energy flux 
due to diffusion. This diffusive energy flux can be formulated in terms of chemical potentials 
of the constituents. 

Chemical potentials are quantities naturally appearing within the multi-component framework. 
When there is diffusion (or more generally, difference in velocities between constituents), 
chemical potentials will provide a contribution to the total energy flux besides the heat flux. 
Using the concept of semi-permeable membrane, the chemical potential for a specific 



3 

constituent in a mixture may be defined as:  the quantity that is continuous across a 
membrane only permeable for that constituent. 

In its original, and most general form, mixture theory considers miscible constituents, i.e. the 
constituents form a homogeneous mixture at a fine scale. Additional constraints, however, 
allows incorporation of immiscibility between constituents. As a result from the immiscibility 
the material obtains a microstructure which is manifested through volume fractions of the 
constituents. This concept is often used when studying mixtures of porous media. Immiscible 
mixture theory formulations can often be simplified to a form which coincides with classical 
theories of porous media. 

So, above, the general framework has been described, but to close the problem, constitutive 
relations must be formulated where dependent variables are given by functions of 
independent variables. It is in this step which characteristic behaviors of the material system 
are to be introduced. In the constitutive laws, couplings between different constituents may 
be introduced to different degree, in terms of no-way, one-way, and two-way couplings. 
Often, to begin with, quite general constitutive relations are prescribed where extensive 
dependencies are allowed and then, the entropy inequality are used to reduce the number of 
dependent variables and put restrictions on the constitutive relations.  
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3 Continuum thermomechanics for a single component body 

Continuum thermomechanics for a single component body is first reviewed in order to set the 
stage for the multi-component theory and introduce the notation. We have a continuous body � of material points � � �, with position � at time � given by the motion � according to, 
� � ���, �
, 
which is invertible such that � � �����, �
. For a referential configuration at time �
 the 
position for the point is given by 

� � ���, �

 � �
��
, 
which also is invertible such that � � �
����
. Using that � may be identified by � and 
ignoring the distinction we may write  

� � ���, �
. 
The deformation gradient � relates increments �� and �� according to, 
�� � ��� � �GRAD�
��. 
The velocity is defined by, 

� � ∂����, �
 � ���, �
, 
and the acceleration by, 

�� � ∂�����, �
 � �� ��, �
. 
Variable fields are introduced as primitive entities when formulating the five axioms of 
thermomechanics. The fields are:  

� � ��/��: mass density, �� is the mass element of the volume element ��, 
�: Cauchy stress, 
�: body force, 
 : energy (heat) flux, 
!: energy (heat) supply, 
": specific internal energy, 
#: specific entropy, 
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$: entropy flux, 

%: entropy supply, 
&: entropy production, 
': absolute temperature (' ( 0), 
* � " + '#: Helmoltz free energy. 

As can be seen, index free notation is used, so for clarity definitions of operators are given 
below for ortonormal bases {EJ} and {ej} in the referential and current configuration, 
respectively. 

grad0 � ∂0/ ∂1234, grad� � ∂�4/ ∂1234532 , GRAD� � ∂�4/ ∂6734587 , div� � ∂�4/ ∂14, div� � ∂;42  ∂12⁄ 3>, GRAD� � ∂?47/ ∂6@3458758@, A · C � D42�42    
3.1 Axioms in global form 

The five axioms of thermomechanics for a single component body are listed below in global 
form. 

Conservation of mass:  

E� FG � ��H � 0 

Conservation of linear momentum:  

E� FG �� ��H + I �J�D + G �� �� � K 

Conservation of rotational momentum:  

E� FG Δ� M �� ��H + I Δ� M �J�D + G Δ� M �� �� � K 

Conservation of energy: 

E� FG ��" N 12 ��
 ��H + I � Q �J�D N I  Q J�D + G �� Q � �� + G �! �� � 0 

Entropy inequality:  

G �& �� � E� FG �# ��H N I $ Q J�D + G �% �� R 0 



6 

No assumptions have been made regarding the form of the entropy flux and entropy 
production. The traditional assumption is that the entropy flux and entropy production are 
given by the heat flux and heat supply divided by absolute temperature, $ �  /' and % � !/', respectively.  
3.2 Axioms on local form in regular points 

The five axioms expressed in global form above have corresponding local forms for regular 
points where fields are continuous.  

Conservation of mass:  

�� N �div� � 0 

Conservation of linear momentum:  

��� + div� + �� � K 

Conservation of rotational momentum: 1 

� + �S � K 
Conservation of energy: 

�"� N div + �! + � · grad� � 0 

Entropy inequality:  

�& � �#� N div$ + �% R 0 

and using $ �  /' and % � !/' we obtain, 
�& � �#� N div� /'
 + �!/' R 0, 
or when using Helmholtz free energy, * � " + '# and conservation of energy, the reduced 
dissipation inequality,  

�& � �*� + � · grad� N �#'� N  /' · grad' R 0, 
is obtained. 

                                                

1
 Here, symmetry of the stress tensor is assumed, i.e. no polar, structured, media incorporating stress couples is 

allowed. 
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3.3 Axioms on local form in singular points 

The five axioms also have local forms for singular points belonging to a discontinuity surface T where fields, U��, �
, may suffer a jump, defined by  

VUW � UX + U�. 
UX and U� denote the limit values of U��, �
 when approaching the singular point from 
different side of the discontinuity surface. Letting �T��, �
 and JT��, �
 denote the velocity and 
normal of the discontinuity surface, local forms of the five axioms, so called jump conditions, 
may be derived. 

Conservation of mass:  

V��� + �T
W · JT � 0 

Conservation of linear momentum:  

V���� + �T
 · JT + �JTW � K 

Conservation of rotational momentum:  

VΔ� M ���
5�� + �T
 + Δ� M �WJT � K 
Conservation of energy: 

Z� [" N �� ��\ �� + �T
 N  + ��] · JT � 0  

Entropy inequality:  

V�#�� + �T
 N $W · JT N &T R 0 , 
where &T is an entropy production per unit surface. Using $ �  /' we obtain, 
V�#�� + �T
 N  /'W · JT N &T R 0 . 
3.4 General constitutive laws 

A thermomechanical process is given by the set of nine functions: 

���, �
,  '��, �
,  ���, �
,  ���, �
,  *��, �
,   ��, �
,  #��, �
,  ���, �
  and  !��, �
,  
obeying the four conservation laws. To close the problem formulation, constitutive relations, 
expressing specific material characteristics, must be formulated. Commonly, conservation of 
mass, conservation of linear momentum, and conservation of energy, are used to determine 
the fields 

���, �
, ���, �
, and !��, �
,  
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respectively, so that the balance laws always are fulfilled given the other fields. Usually,  

���, �
 and '��, �
  
are selected as independent variables and  

���, �
, *��, �
,  ��, �
, and #��, �
  
as the dependent variables to be determined from the independent by the constitutive 
relations. This may formally be written using a response function U, 
����, �
, *��, �
,  ��, �
, #��, �

 � U^��·,·
, '�·,·
_. 
An admissible thermomechanical process is a thermodynamic process which is consistent 
with the response function.  

So far, the entropy inequality has not been involved, but the entropy inequality is now to 
serve as a constraint to be fulfilled by the solutions obtained from the conservation laws. One 
may use the entropy inequality as a direct restriction on ���, �
 and '��, �
 or as a constraint 
when designing the response function U, so that the obtained responses always are fulfilling 
the inequality.  

To my knowledge, the most common way is to do the latter, to use the entropy inequality 
when formulating the constitutive relations, so that the condition always is fulfilled for all 
admissible thermomechanical processes. Coleman and Noll proposed a procedure in 1963 
where the entropy inequality is used as a constraint on the response function and a more 
recent method is according to Müller in 1971, where the admissible thermomechanical 
processes act as restrictions of the entropy inequality. 
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4 Continuum thermomechanics for a multi-component body 

The formulation given below is similar to that of Truesdell, Bowen, and early works of Müller 
where all constituents `, ` � 1 … b, have a common temperature 'c � ' ( 0. When 
formulating the Theory of diffusion, as Truesdell (1984) denote it, he lay down following three 
metaphysical principles (Truesdell 1984):  

1. All properties of the mixture must be mathematical consequences of properties of 

the constituents. 

2. So as to describe the motion of a constituent, we may in imagination isolate it from 

the rest of the mixture, provided we allow properly for the actions of the other 

constituents upon it. 

3. The motion of the mixture is governed by the same equations as it is a single body. 

The kinematics given below is described differently as compared to Bowen but in accordance 
with Haupt (2002) and Wilmanski (2011). Wilmanski (2011) points out that Bowen does not 
formulate this part correctly.  

For each constituent `, a velocity field, 
�c � �c��, �
, 
is introduced. Just for clarity, we notice that by solution of the equations,  

��/�� � �c��, �
,  ��� � 0
 � �c,  ` � 1, … , b,  

trajectories of constituent material particles, identified by their referential position �c, may be 
obtained. 

Partial mass densities of constituents, 

�c � ��c�� , 
are introduced. ��c is the mass of constituent `, within the volume element ��. The total 
mass density of the mixture is defined as 

� � ∑�c, 
where ` � 1 … b in the summation. This notation, giving the range for the index, will be used 
in the forthcoming. The mixture velocity equal the barycentric velocity,   

� � 1/�∑�c�c. 
The difference between the constituent velocity and mixture velocity defines the diffusion 
velocity,  

ec � �c + � . 
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With the above given, similar to what was done for the single media body, the remaining 
variable fields are introduced as primitive entities. The open system formulation of the 
individual constituent is manifested by incorporating exchange possibilities between 

constituents in form of production terms of mass, �cX, linear momentum, fcX, angular 
momentum, gcX, energy, hcX, and entropy, &cX.  
4.1 Constituent balance laws on local form in regular points 

For some of the balances two alternative, but in principle equal, formulations are given. 

Balance of mass: 

 ��c N div��c�c
 � �cX, or  
��c N �cdiv�c � �cX 
Balance of linear momentum: 

E���c�c
 + div��c + �c�c5�c
 + �i�c � fcX , or 
�iX�c N �c�� c + div�c + �c�c � fcX 

Balance of rotational momentum: 

 �c + �cS � gcX 

Balance of energy: 

E���c"c N �� �c�c�
 N div [�c�"c N �� �c�
�c + �cS�c N  c\ + �c��c · �c N !c
 � hcX , or 

fcX · �c N �cX�"c + 12 �c�
 N �c"�c + �cS · grad�c N div c + �c!c � hcX 

Balance of entropy: 

E���c#c
 N div��c#c�c N  c/'
 + �c!c/' � &cX, or 
�cX#c N �c#�c N div� c/'
 + �c!c/' � &cX 
4.2 Mixture conservation laws 

The conservation laws of the mixture are given by the sums of the production terms. These 
are also called the axioms of balance for mixtures.    

Conservation of mass:  ∑�cX � 0 

Conservation of linear momentum: ∑fcX � K 
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Conservation of rotational momentum: ∑gcX � K 

Conservation of energy: ∑hcX � 0 

Entropy inequality: ∑&cX R 0 

4.3 Mixture conservation laws on local form in regular points 

If the balance laws of the constituents are used together with the conservation laws of the 
mixture following local conservation laws for the mixture can be formulated. The conservation 
laws for the mixture in terms of mixture fields are very similar to those of a single component 
body: 

Conservation of mass: �� N �div� � 0 
Conservation of linear momentum: ��� + div� + �� � K 
Conservation of rotational momentum: � + �j � K 
Conservation of energy: �"� N div + �! + � · grad� � 0 
Entropy inequality: �#� N div$ + �% R 0 
The local conservation laws for the mixture as given above are expressed in the following 
mixture fields: 

� � ∑�c + ∑�cec5ec , 
� � ∑klk �c , 
" � "m N �� ∑ nln oc� � ∑ nln "c N �� ∑ nln oc� , 

 � ∑ c N '∑�c#cec N ∑pcjec , 
! � ∑ nln !c N ∑�c�c · ec , 

# � ∑ nln #c , 

$ � �∑ c N '∑�c#cec
/' � ^ + ∑pcjec_/' , and 
% � [∑ nln !c\ /' � �! + ∑�c�c · ec
/' . 
In the mixture conservation laws Truesdell (1984) introduced the field, pc, which here is 
called the chemical potential tensor and defined by,  
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pc � +�c N �c�"c + '#c N �� oc�
q � +�c N �c�*c N �� oc�
q , 
where, *c � "c + '#c, denoting the constituent’s Helmoltz free energy density, is introduced. 
Bowen (1984) on the other hand, introduce the non-kinetic chemical potential tensor, rc, 
defined by,  

�crcj � pc + �c �� oc�q � �c*cq + �c . 
Compared to the theory of a single component body there clearly are differences in the 
relations above for a multi-component formulation. In the definitions of the mixture variables 
there are contributions from diffusion velocities in addition to sums of the corresponding 
constituent variables for the stress, internal energy, energy flux, and energy supply. If 
studying the conservation laws for the mixture it can be seen that the constituent stress 

tensor are generally allowed to be asymmetric, �c s �cj, and that relations between fluxes 
and sources of energy and entropy are different compared with a single component 
formulation. In the multi-component formulation, $ s  /' and % s !/', thus, the third of the 
metaphysical principles of Truesdell is not strictly fulfilled. 
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5 Chemical potentials 

In this section, the for mixtures fundamental concept of chemical potentials tc , also known 
as the partial Gibbs free energy, is discussed and introduced in the framework we study. The 
discovery of the concept of chemical potentials for constituents in thermodynamically based 
theories of mixtures was one of the great achievements of Josiah Willard Gibbs which he 
reported in “On the equilibrium of heterogeneous substances” published in, 1876 (part 1) and 
1878 (part 2).  

The nature of the chemical potential is very similar to that of temperature (Müller, 2007). 
While temperature measures how hot a body is, the chemical potential for a constituent 
measures how much of that constituent that is present in a body. Also, both measurements 
are made from outside of the body, by contact. One may also understand this quantity as the 
energy gained to a mixture when adding a small amount of mass of one of its constituents 
while keeping entropy and volume constant.  

Gibbs obtained his phase rule through consideration of the properties of chemical potentials 
under thermodynamic equilibrium. It states that, under thermodynamic equilibrium, a body 
with spatially separated phases, u, being mixtures of constituents, the chemical potential, tc, 
for a constituent, `, has equal value for all phases, i.e. 
tcv � tcwv     ` � 1 … b` + 1, u � 1 … bu + 1 , 
where b` denotes the number of constituents and bu the number of phases. We may use 
this relation to theoretically construct a membrane permeable for constituent ` only, i.e. a 
semi-permeable membrane. The mixture containing ` is considered situated on one side of 
the membrane (+) and the singular `-material on the other side (-).  

tcX � tc�    x    VtcW � 0 
What we obtain is a definition of the chemical potential of constituent `, i.e. the chemical 

potential tc of constituent ` may be identified with the quantity that is continuous across a 
membrane only permeable for `. 
In a thermomechanical continuum multi-component framework, an ideal semi-permeable 
wall, separating a mixture from one of its constituents, `, may be considered in line with what 
Liu and Müller (1984, chapter 5B.3) describe for their material model proposal. They make 
use of jump conditions of the balance laws of mass, energy, and entropy, setting the singular 
surface velocity equal to the mixture velocity �, and ends up with the expression, 
y+'Λnl N 12 ��c + �
�{ � 0 . 
According to the chemical potential definition given above, now also including non-
equilibrium states,  

tc � tcm N 12 oc� � +'Λnl N 12 oc� , 
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, where tcm � +'Λnl is the “non-kinetic” part of the chemical potential. +'Λnl may be 
identified from Gibbs-Duhem equation,  

∑u| � ∑�|�+'Λn}
 N ��'# + "m
 � ∑�|t|m N ��'# + "m
 , 
where 

"m � ∑ �c� "c  . 
Gibbs-Duhem in the form above was obtained by Liu and Müller when considering the 
entropy inequality together with their constitutive relations. Using Gibbs-Duhem for the pure `-constituent side gives, 
tc � tcm N 12 oc� � F"c + '#c N uc�cH N 12 oc� . 
As can be seen, this expression, when multiplied with the constituent density and the unit 

tensor, equals the expression defining pc given above, the chemical potential tensor, for the 
case when perfect fluids, for which �c � +ucq where uc is the partial pressure of constituent `, are considered. From this also the non-kinetic chemical potential tensor, rc, is obtained if 
the last, “kinetic”, term is disregarded. This indicate the motif of the proposed names for rc 
and  pc. 
To gain some additional understanding of the contribution of the chemical potential, it can be 
instructive to take the point of view of Gurtin (1971), where the heat flux,  ~, is taken as the 
field which divided by temperature gives the entropy flux, i.e.  ~ � '$. Consequently the total 
energy flux,  , is given by the sum of the heat flux, 

 ~ � ∑ c N '∑�c#cec,  
and the diffusive energy flux,   

� � ∑pcjec . 
Thus, if considering a case of perfect fluids,  

� � ∑�ctcec , 
which indicates that the chemical potential tc may be considered a field describing specific 
diffusive energy for constituent `. 
5.1 Charged constituents 

If constituent ` is charged, i.e. has a valence not equal to zero, �c s 0, the electrical potential 
field Φ may have an significant impact on thermomechanical processes.  
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The framework described above may be generalized as to include the electrical potential 
field, and as a consequence, yet a term will be added to the chemical potentials (or 
electrochemical potentials as they also are called in their generalized form). If again 

identifying the total chemical potential with tc and the non-electric part of the chemical 

potential with tc����������4���, we obtain,    
tc � tc����������4��� N �c?Φ , 

where ? denote the Faraday constant. 
The most general case would be if the electrical potential field is heterogeneous within the 
body without restrictions, but for our applications it is probably enough to consider 
heterogeneities in the electrical potential over material interfaces only, e.g. between 
compacted clay and the deposition hole rock wall. Thus, Φ��, �
 may suffer a jump at the 
interface such that,  

VΦW � ΦX + Φ� . 
The jump in electrical potential VΦW is called membrane or Donnan potential. We may utilize 
Gibbs phase rule to consider materials on different sides of a semi-permeable membrane,  

VtcW � 0 x  �tc����������4���� � +�c?VΦW , 
and obtain what is called Donnan equilibrium. As we can see, when charged constituents are 
introduced in a body with a prescribed piecewise homogeneous electrical potential field, 
where the homogeneities spatially correspond to the materials within the body, the non-
electric part of the chemical potential will suffer jumps at material interfaces. The magnitude 
of the jump will be dependent on the constituent valence and the jump in electrical potential 
field between materials.  
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6 Miscible and immiscible formulations 

In the general theoretical framework described in the previous chapter no assumptions has 
been made regarding the local constitution of the mixture. This naturally results in a 
description without a local material structure, where the constituents of the mixture blend 
perfectly, i.e. the mixture is miscible. For some mixtures such description is not appropriate, 
the constituents do not blend and therefore the material obtain a local structure. The mixture 
is then said to be immiscible and the local structure is represented by introducing volume 
fractions, �v, of the immiscible phases, 

�v � ��v/�� ,  
where ��v denote the volume element for phase p in the mixture volume element ��. With 

the introduction of volume fractions true mass densities, &v, can be defined by, 
�v&v � �v , where &v � ��v/��v . 
When introducing the volume fractions these must be added to the dependent variables. 
Adopting a structure of the material may be seen as constraining the material internally. For 
the case we are looking at, a scalar, the volume fraction, is introduced to each material point 
within the body. The volume fraction has to obey certain rules, which will act as constraints of 
the material. To my knowledge, this is the lowest order of material structure which can be 
adopted, a single scalar assigned to each material point. In more general theories, sets of 
scalars or variable vectors may be introduced for describing the structure at material points.  

A pragmatic way how to identify the most suitable representation of a specific physical 
mixture (miscible or immiscible) could be to adopt a definition used by Bowen (1984) when 
separating classes of models: 

“ … a mixture is immiscible if volume fractions effect the response.” 

, i.e. if the concept of volume fractions is needed for describing the material behavior 
accurately, the mixture is considered immiscible. Another more indirect way would be to take 
into consideration the material structure on a local scale: 

“An immiscible mixture is one where locally one can distinguish between mixture 
volumes and constituent volumes.”  

 

Bowen (2010) 

“These mixtures … are immiscible, that is, their constituents remain physically 
separate on a scale which is large in comparison with molecular dimensions.”  

Bedford and Drumheller (1983) 

Immiscibility has traditionally been used when representing general soil systems by adopting 
the phases; solid, liquid, and gas, where each phase may consist of several miscible 
constituents, e.g. dry air and water vapor are miscible and are constituents of the gaseous 
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phase. Generalizations of classical poromechanical theories may be obtained using 
immiscibility within the mixture theory framework; see Bowen (1976, 1984, and 2010) for 
some examples. 
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7 General constitutive laws for a multi-component body 

A miscible thermomechanical process, obeying the laws of conservation, is given by the set 
of functions corresponding to that of a single component body: 

�c��, �
,  '��, �
,  �c��, �
,  �c��, �
,  *c��, �
,   c��, �
,  #c��, �
,  �c��, �
  and  !c��, �
, 
and in addition, the functions,  

�cX��, �
, fcX��, �
, gcX��, �
 , hcX��, �
, and &cX��, �
, 
expressing the exchange between constituents. Following and generalizing the procedure as 
described in the case of single component body, 

 �c��, �
 and '��, �
, 
can be selected to be our independent variables and 

�c��, �
,  *c��, �
,   c��, �
,  #c��, �
, �cX��, �
, fcX��, �
, and hcX��, �
, 
as the dependent variables. This may again formally be written using a response function U, 
^�c��, �
, *c��, �
,  c��, �
, #c��, �
, �cX��, �
, fcX��, �
, hcX��, �
_ � U [�|�·,·
, '�·,·
\. 
An admissible thermomechanical process is a thermodynamic process which is consistent 
with the response function. 

It could be mentioned that since general possibilities for exchanges of mass among the 
constituents of a mixture are included in the framework described above, expressed by, 

∑�cX � 0, 
representation of chemical reactions is prepared for. More information about this can be 
found in (Truesdell, 1984), where also works of Bowen, Coleman and Gurtin are mentioned. 
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8 An immiscible material model with pore pressure 

To gain some insight and knowledge about the foundation of “engineering” formulations 
within soil mechanics, we now study an immiscible formulation within the more general 
mixture theory framework. The material model chosen is one of Bowen (1984, sect. 5A.4), 

where b + 1 incompressible fluids penetrate an incompressible porous solid. We here, as an 
example, choose the number of constituents to be three, b � 3. The first being the porous 
solid, the second we denote as gas, and the third liquid.  

It should be noted that an assumption of incompressibility for a real gas is probably not a 
very good choice. Also, it is worth to mention that there are objections to the model studied 
here (Wilmanski, 2011). Since the model only will be used as an object for studies and 
comparisons with “engineering” formulations, however, this is not anything that will affect us. 

In the model the constitutive assumptions are as follows. The true mass densities, &v, are 
constants, Helmholtz free energies per mixture volume, �v � �v*v, are chosen as, 
�v � ��v�', ��, �c
,  
and the remaining response function is given by, 

^#v, fvX + �grad�v, rv + �^�v �v⁄ _q, gvX,  _ � U^', grad', ��, GRAD��, �c , grad�c , ��, ��_, 
where, u � 1 … b, � � 2 … b, and ` � 2 … b + 1.  
The presence of the scalar multiplier � comes from indeterminacy in the entropy inequality. 
This indeterminacy stems from the assumption of incompressibility and this is manifested 
through the use of � in fvX and rv. The same conclusion regarding indeterminacy related to 

incompressibility was also obtained by Alcoverro (2003) when using micro-thermomechanical 
considerations based on the theory of constrained materials (incompressible) and an 
averaging procedure in order to obtain a formulation on a “macroscopic” scale.  

For the case we consider (solid-gas-liquid), 

�� � ���^', ��, ��_, �� � ���^', ��, ��_ and �� � ���^', ��, ��_. 
To facilitate the notation and bring it to common ground with what is used in soil mechanics, 
some definitions of new variables are made. The sum ∑�v defines the inner part Helmholtz 

free energies per mixture volume, �� � ∑�v , � � 1 + �� defines porosity, and �� � ��/� 
liquid saturation. 

When using the constraint given by the entropy inequality according to the Coleman and Noll 
procedure the following are obtained: 

�# � + ∂��∂'  , ��r� � ���q + �� ∂��j
∂��  , ��r� � ����q, and + f · grad'' + ∑�� · ��X R 0, 
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where 

�� � �, �� � � + ∂�� �^', ��, ��_∂�� , f �  N '∑ ∂�v∂' ev, and 

f�X � ��grad�� + ^����_j �∂��∂�� GRAD��� + ∂��∂�� grad�� N ��X. 
8.1 Pore pressures 

As given above, following results, 

�� � �  and  �� � � + ∂�� �^', ��, ��_∂��  , 
were obtained. Thus, the scalar multiplier introduced due to the indeterminacy in the entropy 
inequality is identified as the liquid pore pressure, ��.  
We may relate the pore pressures to the “non-kinetic” chemical potentials using the result, 

��r� � ����q , 
and the definition of the non-kinetic chemical potential tensor for a perfect fluid, where �� � +u�q, 
r� � t�mq � �*� N u���� q . 
If combined we obtain,  

�� � &�t�m � &�*� N u�/�� and 
�� � &�t�m � &�*� N u�/�� .  
Thus, pore pressures relates to chemical potentials, Helmholtz free energy densities, partial 
pressures, true mass densities (in this model taken as constants) and volume fractions 
according to the relations above. The above indicate that generally, pore pressures should 
not be regarded as pressures in a “physical” sense.  

The pore pressure relations above are on a format discussed by Alcoverro (2003) where 
various possibilities for defining “soil mechanics” stress tensors are considered. In (Alcoverro, 

2003) it is assumed that, at a microscopic scale, there may exist body forces, ��4 , acting 
between the constituents and that they derive from a potential 0, i.e. ��4 � +div0. As a 
consequence, at a macroscopic scale, “soil mechanics” (SM) stress tensors may be 
formulated as, 
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��� v � ^�v + 0vq_/�v , 
where we may identify, 

��� � � +��q , �� � +u�q , and 0� � ��*� , 
from comparing with the expressions above. 

8.2 Capillary pressure (suction) and water retention curve 

The difference between the fluid pore pressures is,  

���
 � �� + �� � &�t�m + &�t�m � + ∂�� �^', ��, ��_∂��  , 
being the definition of capillary pressure, ���
, which equals what also is known as suction. 
For clarity, the relation to chemical potentials is also given above, indicating that generally 

one should view ���
 as a weighted difference in energy potential between the two fluids, 
rather than a “physical” pressure difference. If using the relation between pore pressure, 
partial pressure and Helmholtz free energy together with definitions of porosity, � � 1 + ��, 
and liquid saturation, �� � ��/�, capillary pressure can be expressed, 
���
 � 1� F 1�1 + ��
 u� + 1�� u�H N 1� F 1�1 + ��
 ��*� + 1�� ��*�H . 
In the expression, the first term could be denoted a matric part and the second an osmotic 
part. 

The function, 

+ ∂�� �^', ��, ��_∂��  , 
represents what is commonly called water retention curve.2 In this particular constitutive 
setting the retention curve depends on, temperature, solid deformation, and gas volume 
fraction.  

                                                

2 It should be noted that if we instead choose the three constituents as, the first being the porous solid, the 
second liquid, and the third gas, we would obtain, 

�� � � , �� � � + � � ¡�¢,�£,¤¥
�¤¥ , and ���
 � �� + �� � � � ¡�¢,�£,¤¥
�¤¥ � � � ¡�¢,�£,��¥
����¥
 . 
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8.3 Phase mass transport 

Bowen also obtained the following expression for the liquid linear momentum production after 
exploring the entropy inequality,  

fvX � �vgrad�v + ^����_j �∂�v∂�� GRAD��� + ∂�v∂�� grad�� N �vX . 
In the forthcoming discussion we will for simplicity drop the second term on the right hand 
side, i.e. the contribution from the solid deformation.  

The first term on the right hand side �vgrad�v is called buoyancy force due to arguments 

originating from hydrodynamics to support such contribution to the momentum supplies. 
There is a formal argument, first put forward by Müller, for incorporating terms including 

density gradients (Note that �vgrad�v � tvmgrad�v since &v is constant in the present model), 

if not, the resulting theory is inconsistent with classical thermochemistry (e.g. Bowen, 1974, 
proof sect. 2.3). 

The last contributing term �vX  is called diffusion forces. This name can be motivated from 

concluding that, under isothermal conditions, it disappears when the fluid velocities are zero 
(Bowen, 2010). 

For the present model we assume that we may take the diffusion forces dependent on the 
temperature, the temperature gradient, and the constituent velocities as indicated by the 
appearance of �� and �¦ in the adopted response function U shown earlier3. Thus, we have 
that,   

�vX � �§vX�', grad', �¦ , grad�¦ , ��, �¦
. 
As we have seen in a former section, the stress tensor in the fluids can be expressed,  

�v � +�v�vq N �v*vq . 
Using the above in the fluids balance of linear momentum, repeated here, 

�vX�v�v � �v�̀v N div�v N �v�v N fvX , 
and neglecting, inertial force, mass production, and setting �v � © give, 
K � +�vgrad�v N �v© N �§vX�', grad', �¦ , grad�¦ , ��, �¦
 . 
We may now adopt constitutive equations for the diffusion forces. Beginning with the 
isothermal part, one choice could be,  

                                                

3
 I have not seen it being proved for this specific model, but for similar and more general, (Bowen, 1976, 2010). 
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ª�§vX�', grad', �¦ , grad�¦ , ��, �¦
«4���¬��­�� � +®�v^�v + ��_ , 
where the material coefficient ®�v is known as the drag coefficient. The equations for liquid 

and gas now become, 

�� + �� � + n¥¯£¥ [¤¥n¥ grad�� + ©\    and   �� + �� � + n°¯£° F¤°n° grad�� + ©H, 
respectively, which are on the “Darcy’s law format”. So, Darcy’s law is an approximation of 
the linear momentum for the fluid constituents.  

Here I would like to call attention upon, since it might not be evident from the present 
description, that for isothermal conditions it is in fact chemical potential gradients, rather than 
gradients of any “physical” pressure, that are the general driving force that appears naturally 
in this framework4. This can be more clearly seen using that,  

�v�v grad�v �  gradtvm 

for the present model where &v is constant. When inserted in the transportation law we 

obtain, 

�v + �� � + �v®�v ^gradtvm + ©_ , 
which shows the true basis of the phase mass transport.  

                                                

4
 See (Bowen, 1976, eqn. 2.9.74, 2.9.50, and 2.9.51) for a clearer view on this matter.  
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9 Diffusive mass transport of constituents 

Here we will divert from the constitutive model proposed by Bowen and turn to general 
diffusive mass transport in miscible mixtures as described by Liu and Müller (1984, sect. 
5B.4). The underlying multi-component formulation is however still the same as described 
above. 

Diffusion flux of a constituent ` within a miscible mixture may be described as the flux not 
attributed to the mean flux of the mixture as a whole. The diffusion origin from molecular 
transfers of ` within the mixture and is an irreversible process. 

For the present general framework, when considering perfect fluids and miscibility, Liu and 
Müller (1984, sect. 5B.4) derive an expression and describe that:   

“Fick’s law comes out … as a mutilated form of the balance of partial momenta.”,    

which, as we saw in the previous chapter, also was the case for Darcy’s law. The expression 
is on the format, 

ec � + ± gc|gradt|w
w��
|²� + &�grad' N ³´µµh¶h!´�·¸� �h!�¹ , 

where, t|w � t| + tw , is constituent º’s relative chemical potential with respect to 

constituent b, gc| is the mobility tensor for constituent ` with respect to constituent º, the 
second term on the left hand side represents (a part of) thermal diffusion (the Soret effect), 
and the last term includes effects from acceleration. 

If neglecting the acceleration term, the expression is on the same format as described in 
Landau and Lifshitz (1959) where a binary mixture is considered. They take partial pressure, uc, temperature, ', and concentration, µc � �c/�, as their independent variables and 
express the gradient in chemical potential in terms of these, 

gradtcw � EtcwEuc graduc N EtcwE' grad' N EtcwEµc gradµc  , 
which gives, 

ec � + ± gc| Et|wEu| gradu|
w��
|²� + »± �gc| Et|wE' �w��

|²� N &�¼ grad' + ± gc| Et|wEµ| gradµ|
w��
|²�  . 

Thus, partial pressure, temperature, and concentration are driving forces for diffusion 
transport in the mixture. The last left hand term may be recognized as “classical” 
concentration driven diffusion as represented by Fick’s law. The second term is thermal 
diffusion with has contributions from the direct assumption of temperature driven diffusion as 
well as from the adopted temperature dependence of the chemical potentials. The first term 
is representing pressure driven diffusion, e.g. significant in a centrifuge, where constituents 
with different density can be separated due to this effect. 
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10 Effective stress 

In the field of soil mechanics, several proposals of so-called effective stress measures, 
considered to be suitable when describing the mechanical behavior of the porous material, 
have been presented. Below a number of propositions of effective stress are given for the 
present model following the framework described by Alcoverro (2003). 

The mixture stress is given by, 

� � ∑�c + ∑�cec5ec. 
In the following we disregard the by diffusion induced part, ∑�cec5ec, so that � � ∑�c. This 
could be appropriate for the systems we consider since those often produce small diffusion 
velocities. For the current model the fluid stresses can be expressed by the partial pressure uv � +1/3tr�v, the pore pressure, �v, and Helmholts free energy, *v, so that,  
�v � +uvq � +�v�vq N �v*vq, 
which, together with the definition above of the total stress tensor, give, 

� � �� + ^u� N u�_q � �� + ^���� N ����_q N ^��*� N ��*�_q. 
We may reformulate this expression to define a “soil mechanics” (SM) stress tensor by 
incorporating the terms of the potential as described by Alcoverro (2003), 

��� � � + ^��*� N ��*�_q � �� + ^u� N u�_q + ^��*� N ��*�_q � �� + ^���� N ����_q. 
Using definitions of porosity, � � 1 + ��, liquid saturation, �� � ��/�, and capillary pressure, ���
 � �� + ��, we obtain, 

��� � �� + �����q + ��1 + ��
��q � �� + �^�� + �����
_q. 
Since constituents are uncompressible in the present representation, a superposed pressure 
keeps the thermomechanical process unaltered (Alcoverro, 2003). From using this, new SM-

stresses ��� ~ may be defined, where one choice is,  

��� ~ � ��� N �^�� + �����
_q � ��, 
which has strong similarities with the effective stress measure as proposed by Bishop with 
the so-called effective stress parameter ¾ � ���. The expression is, however, different to 
Bishop’s proposal due to the scaling of the gas pore pressure with the porosity in the second 
term. The relation between total stress and solid stress is equal to what Hutter et. al. (1999) 

obtain in their model where +�v�v�¿ÀÁÁÂÃ
 � +�v�v N �v*v and therefore ��� � �. 
In order to obtain a SM-stress in agreement with Bishop’s proposal we may form ��� ~ such 
that, 
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��� Ä � ��� N ^�� + �����
_q � �� N �1 + �
^�� + �����
_q. 
Definitions of new SM-stresses for saturated conditions (sat), �� � 1, and unsaturated 
conditions (unsat), �� Å 1, may be defined according to,  

������ ~ � ��� N ��q � �� N �1 + �
��q  and 
�Æ������ Ä � ��� N ��q � �� N �1 + �
��q N ������
q , 

where ������ ~ and �Æ������ ~ as defined above are usually referred to as Terzaghi’s effective 
stress and the net stress, respectively.  
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11 An immiscible material model with compressibility 

As a quite general base case to be used in the next chapter, the immiscible compressible 
formulation of Bowen (1984, sect. 5A.4) is selected. In the material model b + 1 fluids 
penetrate a porous solid (the first of the constituents and indexed s). In the model the 
constitutive assumptions are that,  

 �v � ��v^', ��, �� , ��_, 
and the remaining response function is given by, 

^#v, fvX, rv, gvX,  , �̀�_ � U^', grad', ��, GRAD��, �� , grad�� , �� , grad�� , ��, ��_ 
where, u � 1 … b and �, ! � 2 … b, indicate considerable possibilities for dependencies 
between the constituents. Bowen now takes the two relations above to be consistent with the 
entropy inequality in the sense of Coleman and Noll, and obtains the following: 

�# � + ∂��∂'  , ��r� � +�� ∂��j
∂��  , r� � t�q , +f · grad'' + ∑Ç� · ��X N ∑%�È� R 0 

where, 

t� � ∂��∂�� , %� � + ∂��∂��  , f �  N '∑ ∂�v∂' ev , 
��X � f�X + t�grad�� N %�grad�� N ^����_j �∂��∂�� GRAD��� N ∑ ∂��∂�� grad�� N ∑ ∂��∂�� grad��  , 
��� � È��', grad', ��, GRAD��, ��, grad��, �� , grad�� , ��, ��
, 
and 

Çv � �v + �� . 
Above, È� should be understood as the functions that give ��� . 
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12 Non-associative immiscibility 

Here follows a discussion about some ideas of mine regarding how to obtain different levels 
of immiscibility. I have not seen this particular type of formulation in any of the references, 
but it seems to strongly relate to double porosity models (e.g. Alcoverro, 2002) and also 
somewhat to what is called hierarchical or multi-level models, where, fields on a micro-scale 
are averaged to obtain macro-scale variables. Here however, strictly speaking, scale does 
not enter the formulation and no averaging is taking place either. Only immiscibility on 
different levels, generally not connected to scale, is introduced.   

If first considering a mixture with phases solid, liquid, and gas and adopting associative 
immiscibility (with an operator denoted � .AI. 
), the mixture constitution could formally be 
expressed as, 

^�solid.AI.liquid
.AI.gas_ � ^�gas.AI.solid
.AI.liquid_ � ^�liquid.AI.gas
.AI.solid_ . 
Thus, the three mixture constitutions are equal; the order of considering the phases does not 
matter for associative immiscibility. Another way to express this is to say that the phases are 
peers on the same level, as indicated in the diagram below.  

  mixture    

 / | \   

solid  liquid  gas  

 

As a second case we may think of representing a mixture where immiscibility acts on 
different levels between constituents. This could also be thought of as non-associative 
immiscibility, i.e. the order of which the phases are considered matter. Using non-associative 
immiscibility (with an operator denoted � .NAI. 
) for the same phases as were considered 
above, would give the three mixture constitutions,  

^�solid.NAI.liquid
.NAI.gas_ s ^�gas.AI.solid
.NAI.liquid_ s ^�liquid.NAI.gas
.NAI.solid_, 
where phases now belong to different levels according to the tree-structures below.  

  mixture     mixture     mixture   

  / \     / \     / \   

 mixture’  gas   mixture’  liquid   mixture’  solid  

 / \     / \     / \    

solid  liquid   gas  solid   liquid  gas   

 

Mixture formulations, denoted mixture and mixture~ are obtained on different levels. It can 
also be noticed that, for the present case, where both subsequent mixtures have the same 
number of phases, a recursive structure emerge.  

When continuing with discussing the non-associative immiscibility we will select the left case ^�solid.NAI.liquid
.NAI.gas_ since this is a promising candidate for obtaining a representative 
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model of systems including montmorillonite, water, and air. The solid phase is thought of as 
containing the minerals, the liquid phase is in itself a miscible mixture of liquid water and 
dissolved dry air, and the gas phase is also in itself a miscible mixture, of water vapor and 
dry air, i.e. there are five constituents present in the formulation. For simplicity, however, the 
three phases are only considered in the following. 

In the associative case the solid particles can be considered as surrounded by liquid and 
gas, but for the chosen non-associative case the solid particles may only be surrounded by 
the liquid phase, whereas mixture~ � �solid.NAI.liquid
, consisting of solid particles and the 
liquid phase, may only be surrounded by gas. 

As far as I can understand, the underlying concept of the model proposed above very much 
resembles that proposed by Alcoverro (2002). The main difference in the concepts is that no 
“free liquid”, which is peer with mixture’ and gas in Alcoverro’s formulation, is present in the 
model proposed here.  

To see where the concept of non-associative immiscibility will take us I have, tentatively, 
performed the two step process acquired to formulate the representation of the total mixture 
using the immiscible compressible formulation of Bowen (1984, sect. 5A.4) reviewed in the 
former section. For our purposes a single compressible fluid is now considered to penetrate 
a compressible porous solid, i.e. b � 2, in both steps.  
The two step formulation process, described in appendix, begins with the lower level fixtureÄ, where a solid and the Íiquid (a fluid) should be considered an immiscible mixture, mixture~ � �solid.NAI.liquid
. In the next step, mixtureÄ, is considered as represented by a 
porous solid, and yet a fluid (the ggggas) should be considered as an immiscible mixture which 

lead to the formulation of the total mixture, mixture � �mixture~.NAI.gas
.  
When collecting everything in unprimed quantities, thus expressed at the top level, the boxed 
constitutive relations at the end of this section are obtained. 

As can be seen, the scaled liquid volume fraction, �� �­⁄ , naturally appears in the 
formulation. If one like, this ratio might be thought of as a lower level (“microscopic”) porosity, �Ä, active on the lower mixture level. For systems containing montmorillonite, the distance 
between the mineral sheets is a good candidate for partially describing the state of the 

system at a small scale. The low level porosity, �Ä, could be thought of as an average 
representation of the mineral sheet distance. 

At the higher mixture level, the gas volume fraction, ��, might be seen as a higher level 

(“macroscopic”) porosity, �. 
The total porosity, ���� � 1 + ��, is given by, 
���� � �Ä�1 + �
 N �, 
with time derivative, 

�� ���1 + ���� � �� Ä1 + �~ N ��1 + � , 
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which also can be expressed as, 

∂�³ln�1 + ����
¹ � ∂�³ln�1 + �~
¹ N ∂�³ln�1 + �
¹ . 
 

�­ � 1 + �� 
�­ � ����� N ����
 ��� N ��
⁄  

�­ � �grad�­
��GRAD�­ 
�� � ��� F', ��, ���­ &� , ���­ , ��, ��H 
�� � ��� F', ��, ���­ &� , ���­ , ��, ��H 
�� � ���^', �­, ��, ��_ 
��­#�, f�X, r�, g�X
� U� F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, grad�� , ��, grad�� , ��, �� , ��H 
Ï�­#� , f�X, r� , g�X, E� F ���­HÐ
� U� F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, grad��, �� , grad�� , ��, �� , ��H 
^#�, f�X, r�, g�X, ���_ � U�^', grad', �­, GRAD�­, ��, grad��, ��, grad��, �­, ��_ 
 ­ �  Ñ­ F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, ��H 
 �  ­ N  Ñ^', grad', �­, GRAD�­, ��, grad��, �� , grad�� , �­, ��_ 
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13 Summary and concluding remarks 

I have found it very enlightening when conducting this literature study. Many assumptions 
upon which the “engineering” formulations we rely on rests became visible to me for the first 
time. This kind of study also gives a possibility to discover parts where there could be 
potential for future developments.  

Here follows a list with some selected conclusions. 

• The chemical potential is a fundamental part of both classical and modern mixture 

theories.  

• To allow for general and mechanism-based models, jump conditions, i.e. 

discontinuities in fields, should be possible. 

• Miscible and immiscible formulations are possible. Immiscibility leads to adopting a 

material structure represented by volume fractions. Porosity and degree of saturation 

may be defined in terms of volume fractions. 

• Pore pressures for fluid phases are generally not ”physical” pressures, they are 

scaled chemical potentials. 

• Thereby, ”Capillary pressure”, or suction, is the difference between scaled chemical 

potentials.  

• Darcy’s law and Fick’s law are obtained from simplifying linear momentum of the 

phase or constituent, respectively. Chemical potential and temperature are the basic 

driving forces. 

My own modest contribution is a concept of non-associative immiscibility which gives a 
mixture with immiscibility on different levels. An attempt to schematically formulate a material 
model using this concept has been described, and in this formulation, porosities belonging to 
the different levels are obtained. 

Studies of general theoretical frameworks and existing valid constitutive relations in “modern” 
mixture theory (it has been around since the late sixties) very much enhance the 
understanding of our current tools based on “engineering” formulations. A deeper 
understanding of the foundation on which our present numerical tools rest could hardly be a 
disadvantage. Also, I believe that studies of general frameworks may give indications of 
directions where to search for potential for progress concerning our current formulations. 

In this study I have mostly been looking at the foundations of mixture theory as described in 
references belonging to a period rather early in its development. To get a picture of the 
current “state of the art” in this field one would probably have to study more recent 
references, e.g. (Müller and Ruggeri, 1993), (Hutter et al., 1999), (Wilmanski; 2005, 2011), 
and (Jussila, 2007).  

For facilitating deeper understanding and testing the theories, it seems suitable to formulate 
simple problems that could be solved using general mathematical tools, for instance 
MathCad or Comsol Multiphysics. Such implementations could also serve as a tool for 
evaluating what is gained as compared to existing models. 
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The incorporation of chemical reactions has not been addressed here, mostly so since it 
certainly is not my field of expertise. The framework does, however, incorporate such 
possibilities in its core. As far as I understand, no ad hoc additions are needed when 
performing the incorporation of chemistry into the framework. I have seen several references 
to literature where incorporation of chemical reactions is described, so my impression is that 
this is quite established. 
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16 Appendix 

Following the concept of non-associative immiscibility outlined above, for  mixture~ ��solid.NAI.liquid
 we obtain: 
�~� � ���/��~ , �~� � ���/��~ , 
�~� � ���/��~ , �~� � ���/��~ , 
�~­ � �~� N �~� : total mass density for mixture~, 
�~­ � 1/�~­��~��� N �~���
: barycentric velocities for mixture~, 
e~� � �� + �~­ , e~� � �� + �~­, 

�~v&v � �~v , where &v � ��v/��v . 
and the constitutive laws: 

�~� � ��~��', ��, �~�, �~�
, 
�~� � ��~��', ��, �~� , �~�
, 
�#~�, f�X, r�, g�X
 � U~��', grad', ��, GRAD��, �~� , grad�~�, �~� , grad�~� , ��, ��
, 
�#~� , f�X, r� , g�X, �� ~�
 � U~��', grad', ��, GRAD��, �~� , grad�~� , �~� , grad�~� , ��, ��
, and  
 ~­ �  Ñ~­�', grad', ��, GRAD��, �~� , grad�~� , �~� , grad�~� , ��, ��
. 
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For mixture � �mixture~.NAI.gas
 we obtain: 
�­ � ��~/�� , �� � ���/��, 
�­ � ��­/�� , �� � ���/��, 
� � �­ N �� : total mass density for mixture, 
� � 1/���­�­ N ����
: barycentric velocities for mixture, 
e­ � �­ + � , e� � �� + �, and 
�v&v � �v , where &v � ��v/��v, 
with the constitutive relations, 

�­ � ��­^', �­, ��, ��_, 
�� � ���^', �­, ��, ��_, 
�#­, f­X , r­, g­X , 
 � U­^', grad', �­, GRAD�­, ��, grad��, ��, grad��, �­, ��_, 
^#�, f�X, r�, g�X, ���_ � U�^', grad', �­, GRAD�­, ��, grad��, ��, grad��, �­, ��_, and 
 �  Ñ^', grad', �­, GRAD�­, ��, grad��, �� , grad�� , �­, ��_. 
The two mixture models at different levels above might be “tied together” by expressing 
primed quantities, with reference volume � ��Ä, in terms of unprimed quantities, with 

reference volume � ��. The following is obtained: 
�­ � 1 + �� ,  
�� � �­�~� , �� � �­�~� , 
�� � �­�~� , �� � �­�~� , �­ � �­�~­ � �­�~� N �­�~� � �� N ��, 
�­ � �Ä­ � ��Ä��� N �Ä���
 �Ä­⁄ � ����� N ����
 �­⁄ , 

e� � e~�, e� � e~�, 
�~� � �~�*~� � n£¤Ò *~� � ��*� � �� , �~� � �~�*~� � n¥¤Ò *~� � ��*� � ��, 

�~�#~� � n£¤Ò #~� � ��#� , �~�#~� � n¥¤Ò #~� � ��#�, 
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� � �­ N �� � �� N �� N ��, 
� � 1/������ N ���� N ����
, 
e­ � �­ + � � ����� N ����
 �­⁄ + ����� N ���� N ����
/� , e� � �� + �, and 
�­ � Ó­���� ­, �� ­ � ∂�­ ∂�­⁄ � GRAD�­, Ó­ � ∂�­ ∂�­⁄ � grad�­. 
When collecting everything in unprimed quantities following constitutive relations are 
obtained:  

�­ � 1 + �� 
�­ � ����� N ����
 ��� N ��
⁄  

�­ � �grad�­
��GRAD�­ 
�� � ��� F', ��, ���­ &� , ���­ , ��, ��H 
�� � ��� F', ��, ���­ &� , ���­ , ��, ��H 
�� � ���^', �­, ��, ��_ 
��­#�, f�X, r�, g�X
� U� F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, grad�� , ��, grad�� , ��, �� , ��H 
Ï�­#� , f�X, r� , g�X, E� F ���­HÐ
� U� F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, grad��, �� , grad�� , ��, �� , ��H 
^#�, f�X, r�, g�X, ���_ � U�^', grad', �­, GRAD�­, ��, grad��, ��, grad��, �­, ��_ 
 ­ �  Ñ­ F', grad', ��, GRAD��, ���­ &� , grad F ���­ &�H , ���­ , grad ���­ , ��, ��H 
 �  ­ N  Ñ^', grad', �­, GRAD�­, ��, grad��, �� , grad�� , �­, ��_ 
 


